Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171849, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537828

RESUMO

Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.


Assuntos
Ecossistema , Rios , Animais , Invertebrados/fisiologia , Água Doce , Cloreto de Sódio
2.
Front Microbiol ; 14: 1217750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075934

RESUMO

Introduction: Microbes are increasingly (re)considered for environmental assessments because they are powerful indicators for the health of ecosystems. The complexity of microbial communities necessitates powerful novel tools to derive conclusions for environmental decision-makers, and machine learning is a promising option in that context. While amplicon sequencing is typically applied to assess microbial communities, metagenomics and total RNA sequencing (herein summarized as omics-based methods) can provide a more holistic picture of microbial biodiversity at sufficient sequencing depths. Despite this advantage, amplicon sequencing and omics-based methods have not yet been compared for taxonomy-based environmental assessments with machine learning. Methods: In this study, we applied 16S and ITS-2 sequencing, metagenomics, and total RNA sequencing to samples from a stream mesocosm experiment that investigated the impacts of two aquatic stressors, insecticide and increased fine sediment deposition, on stream biodiversity. We processed the data using similarity clustering and denoising (only applicable to amplicon sequencing) as well as multiple taxonomic levels, data types, feature selection, and machine learning algorithms and evaluated the stressor prediction performance of each generated model for a total of 1,536 evaluated combinations of taxonomic datasets and data-processing methods. Results: Sequencing and data-processing methods had a substantial impact on stressor prediction. While omics-based methods detected a higher diversity of taxa than amplicon sequencing, 16S sequencing outperformed all other sequencing methods in terms of stressor prediction based on the Matthews Correlation Coefficient. However, even the highest observed performance for 16S sequencing was still only moderate. Omics-based methods performed poorly overall, but this was likely due to insufficient sequencing depth. Data types had no impact on performance while feature selection significantly improved performance for omics-based methods but not for amplicon sequencing. Discussion: We conclude that amplicon sequencing might be a better candidate for machine-learning-based environmental stressor prediction than omics-based methods, but the latter require further research at higher sequencing depths to confirm this conclusion. More sampling could improve stressor prediction performance, and while this was not possible in the context of our study, thousands of sampling sites are monitored for routine environmental assessments, providing an ideal framework to further refine the approach for possible implementation in environmental diagnostics.

3.
Mol Ecol Resour ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548515

RESUMO

Environmental DNA (eDNA) metabarcoding has gained growing attention as a strategy for monitoring biodiversity in ecology. However, taxa identifications produced through metabarcoding require sophisticated processing of high-throughput sequencing data from taxonomically informative DNA barcodes. Various sets of universal and taxon-specific primers have been developed, extending the usability of metabarcoding across archaea, bacteria and eukaryotes. Accordingly, a multitude of metabarcoding data analysis tools and pipelines have also been developed. Often, several developed workflows are designed to process the same amplicon sequencing data, making it somewhat puzzling to choose one among the plethora of existing pipelines. However, each pipeline has its own specific philosophy, strengths and limitations, which should be considered depending on the aims of any specific study, as well as the bioinformatics expertise of the user. In this review, we outline the input data requirements, supported operating systems and particular attributes of thirty-two amplicon processing pipelines with the goal of helping users to select a pipeline for their metabarcoding projects.

4.
Sci Total Environ ; 872: 162196, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781140

RESUMO

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.


Assuntos
Ecossistema , Rios
5.
Bioinformatics ; 38(20): 4817-4819, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36029248

RESUMO

SUMMARY: DNA metabarcoding is an emerging approach to assess and monitor biodiversity worldwide and consequently the number and size of data sets increases exponentially. To date, no published DNA metabarcoding data processing pipeline exists that is (i) platform independent, (ii) easy to use [incl. graphical user interface (GUI)], (iii) fast (does scale well with dataset size) and (iv) complies with data protection regulations of e.g. environmental agencies. The presented pipeline APSCALE meets these requirements and handles the most common tasks of sequence data processing, such as paired-end merging, primer trimming, quality filtering, clustering and denoising of any popular metabarcoding marker, such as internal transcribed spacer, 16S or cytochrome c oxidase subunit I. APSCALE comes in a command line and a GUI version. The latter provides the user with additional summary statistics options and links to GUI-based downstream applications. AVAILABILITY AND IMPLEMENTATION: APSCALE is written in Python, a platform-independent language, and integrates functions of the open-source tools, VSEARCH (Rognes et al., 2016), cutadapt (Martin, 2011) and LULU (Frøslev et al., 2017). All modules support multithreading to allow fast processing of larger DNA metabarcoding datasets. Further information and troubleshooting are provided on the respective GitHub pages for the command-line version (https://github.com/DominikBuchner/apscale) and the GUI-based version (https://github.com/TillMacher/apscale_gui), including a detailed tutorial. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Código de Barras de DNA Taxonômico , Software , Complexo IV da Cadeia de Transporte de Elétrons
6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203719

RESUMO

Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.


Assuntos
Células-Tronco/citologia , Dente/citologia , Animais , Biomarcadores/metabolismo , Regeneração Óssea , Humanos , Organoides/citologia , Osteogênese
7.
Environ Sci Ecotechnol ; 8: 100122, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36156998

RESUMO

Reliable and comprehensive monitoring data are required to trace and counteract biodiversity loss. High-throughput metabarcoding using DNA extracted from community samples (bulk) or from water or sediment (environmental DNA) has revolutionized biomonitoring, given the capability to assess biodiversity across the tree of life rapidly with feasible effort and at a modest price. DNA metabarcoding can be upscaled to process hundreds of samples in parallel. However, while automated high-throughput analysis workflows are well-established in the medical sector, manual sample processing still predominates in biomonitoring laboratory workflows limiting the upscaling and standardization for routine monitoring applications. Here we present an automated, scalable, and reproducible metabarcoding workflow to extract DNA from bulk samples, perform PCR and library preparation on a liquid handler. Key features are the independent sample replication throughout the workflow and the use of many negative controls for quality assurance and quality control. We generated two datasets: i) a validation dataset consisting of 42 individual arthropod specimens of different species, and ii) a routine monitoring dataset consisting of 60 stream macroinvertebrate bulk samples. As a marker, we used the mitochondrial COI gene. Our results show that the developed single-deck workflow is free of laboratory-derived contamination and produces highly consistent results. Minor deviations between replicates are mostly due to stochastic differences for low abundant OTUs. Thus, we successfully demonstrated that robotic liquid handling can be used reliably from DNA extraction to final library preparation on a single deck, thereby substantially increasing throughput, reducing costs, and increasing data robustness for biodiversity assessments and monitoring.

8.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512908

RESUMO

With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.


Assuntos
Odontogênese , Regeneração , Dente/fisiologia , Animais , Materiais Biocompatíveis , Esmalte Dentário/fisiologia , Portadores de Fármacos , Humanos , Transdução de Sinais , Células-Tronco/metabolismo , Engenharia Tecidual , Tecidos Suporte
9.
Biomolecules ; 9(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817802

RESUMO

Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.


Assuntos
Regeneração Óssea , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Polissacarídeos/química , Animais , Materiais Biocompatíveis/química , Transplante Ósseo/métodos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual/métodos , Tecidos Suporte
10.
PLoS One ; 14(12): e0226547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869356

RESUMO

Benthic invertebrates are the most commonly used organisms used to assess ecological status as required by the EU Water Framework Directive (WFD). For WFD-compliant assessments, benthic invertebrate communities are sampled, identified and counted. Taxa × abundance matrices are used to calculate indices and the resulting scores are compared to reference values to determine the ecological status class. DNA-based tools, such as DNA metabarcoding, provide a new and precise method for species identification but cannot deliver robust abundance data. To evaluate the applicability of DNA-based tools to ecological status assessment, we evaluated whether the results derived from presence/absence data are comparable to those derived from abundance data. We analysed benthic invertebrate community data obtained from 13,312 WFD assessments of German streams. Broken down to 30 official stream types, we compared assessment results based on abundance and presence/absence data for the assessment modules "organic pollution" (i.e., the saprobic index) and "general degradation" (a multimetric index) as well as their underlying metrics. In 76.6% of cases, the ecological status class did not change after transforming abundance data to presence/absence data. In 12% of cases, the status class was reduced by one (e.g., from good to moderate), and in 11.2% of cases, the class increased by one. In only 0.2% of cases, the status shifted by two classes. Systematic stream type-specific deviations were found and differences between abundance and presence/absence data were most prominent for stream types where abundance information contributed directly to one or several metrics of the general degradation module. For a single stream type, these deviations led to a systematic shift in status from 'good' to 'moderate' (n = 201; with only n = 3 increasing). The systematic decrease in scores was observed, even when considering simulated confidence intervals for abundance data. Our analysis suggests that presence/absence data can yield similar assessment results to those for abundance-based data, despite type-specific deviations. For most metrics, it should be possible to intercalibrate the two data types without substantial efforts. Thus, benthic invertebrate taxon lists generated by standardised DNA-based methods should be further considered as a complementary approach.


Assuntos
Organismos Aquáticos/classificação , Biodiversidade , Evolução Biológica , Invertebrados/classificação , Rios , Animais , Organismos Aquáticos/citologia , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Bases de Dados Factuais/tendências , Ecossistema , Monitoramento Ambiental , Extinção Biológica , Alemanha , Invertebrados/citologia , Invertebrados/genética , Invertebrados/crescimento & desenvolvimento , Dinâmica Populacional/tendências
11.
Molecules ; 23(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332854

RESUMO

Antioxidant activity is an essential aspect of oxygen-sensitive merchandise and goods, such as food and corresponding packaging, cosmetics, and biomedicine. Technical lignin has not yet been applied as a natural antioxidant, mainly due to the complex heterogeneous structure and polydispersity of lignin. This report presents antioxidant capacity studies completed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The influence of purification on lignin structure and activity was investigated. The purification procedure showed that double-fold selective extraction is the most efficient (confirmed by ultraviolet-visible (UV/Vis), Fourier transform infrared (FTIR), heteronuclear single quantum coherence (HSQC) and 31P nuclear magnetic resonance spectroscopy, size exclusion chromatography, and X-ray diffraction), resulting in fractions of very narrow polydispersity (3.2⁻1.6), up to four distinct absorption bands in UV/Vis spectroscopy. Due to differential scanning calorimetry measurements, the glass transition temperature increased from 123 to 185 °C for the purest fraction. Antioxidant capacity is discussed regarding the biomass source, pulping process, and degree of purification. Lignin obtained from industrial black liquor are compared with beech wood samples: antioxidant activity (DPPH inhibition) of kraft lignin fractions were 62⁻68%, whereas beech and spruce/pine-mixed lignin showed values of 42% and 64%, respectively. Total phenol content (TPC) of the isolated kraft lignin fractions varied between 26 and 35%, whereas beech and spruce/pine lignin were 33% and 34%, respectively. Storage decreased the TPC values but increased the DPPH inhibition.


Assuntos
Antioxidantes/farmacologia , Lignina/química , Lignina/farmacologia , Madeira/química , Antioxidantes/química , Biomassa , Varredura Diferencial de Calorimetria , Temperatura Alta , Espectroscopia de Ressonância Magnética , Fenóis/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...